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The Evans-Tishchenko reaction provides an efficient and practical solution for the oxidation of aldehydes possessing sensitive electron-rich
heteroatoms to the corresponding esters. Careful selection of the sacrificial #-hydroxy ketone provides considerable subsequent flexibility to
access the desired carboxylic acid.

The oxidation of aldehydes to carboxylic acids or related [ N R

congeners is one of the most common reactions in synthetic Scheme 1
organic chemistry Although a large variety of reagents have o o
been developed, oxidations in the presence of electron-rich PR Py
. : (0] OH H R OH O R;
heteroatoms (i.e. S, Se, N, P) can prove to be challenging. M (eacrificial) E
Our long-term interest in the use of 1,3-dithianes as an R R . Ry R,
cat. Sml,

effective linchpin for constructing architecturally complex

natural and unnatural produgtsas revealed the critical need o  on

for a reliable method for oxidizing aldehydes in the presence 0
of sulfur? o RGMRZ oH o)km
. (sacrificial) =
In 1990, Evans and co-workers introduced the Sml P —— :
H Ry cat. Sml, Rs R,

catalyzed Tishchenko reaction, a process involvedyction
of 3-hydroxy ketones via hydride transfer from a sacrificial
aldehyde for the stereoselective elaboration of anti 1,3-diols ) » ) o
(Scheme 1}.Alternatively, this reaction can be viewed as éaction conditions might prove to be useful for the oxidation
an oxidation of an aldehyde via hydride transfer to a of aldehydes in the presence of electron-rich heteroatoms.
sacrificial hydroxy ketone. We reasoned that these mild Pleasingly, treatment ¢@F-hydroxy ketonel&* with 1 equiv
— p T y of dithiane aldehyd&® and 20 mol % Smlin THF at—10
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(1) Comprehensive Organic Synthesost, B. M., Fleming, 1., Eds.: C results in the formation of est8gf in high yield (Scheme
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10.1021/0l027095p CCC: $22.00  © 2002 American Chemical Society
Published on Web 11/12/2002



Scheme 2
o]

)

(o}

o OH 2 OH ©
Sml, ( 20 mol%) H
-10°C, 1 h

1a (89%) 3a

To make this tactic synthetically useful, we explored the
use of a series ¢f-hydroxy ketones, each offering a different
method for liberation of the required carboxylic acid. A
number of racemig-hydroxy ketonesia—f) were prepared
from inexpensive commercially available ketones and alde-
hydes via the aldol reactionln each case, 1 equiv of
-hydroxy ketones (la—f) reacted smoothly, and in good
yield, with 1 equiv of dithiane aldehyd® to furnish the
desired esters (Table 1).

Table 1. Oxidation of Aldehyde? with Various -Hydroxy
Ketones

2

i)

o OH OH ©
Sml, { 20 mol%) B
\HK)\R THF. 100 \H\/\R
1a-1f 3a - 3f
entry R product time (min) yield (%)
1 i-Pr 3a 60 89
2 Et 3b 45 78
3 Me 3c 60 67
4 CH=CH, 3d 45 75
5 Ph 3e 60 85
6 p-MeOPh 3f 15 80

With the desired esters in hand, various means for
liberation of the carboxylic acid were investigated (Table
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(3) Smith, A. B., lll; Adams, C. A.; Barbosa, S. A. L.; Degnan, AJP.
Am. Chem. SoSubmitted for publication.
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Table 2. Formation of Acid4 from Esters3a—f

e
OH gws ) s
W Conditions W
R _— HO S
3a - 3f 4
entry ester conditions yield (%)
1 3a LiOH, aqueous MeOH, rt,5 h 95
2 3a SOjs-Pyr, EtsN, DMSO, then DBU 86
3 3b LiOH, aqueous MeOH, rt, 4 h 96
4 3c LiOH, aqueous MeOH, rt, 2.5 h 94
5 3d Pd(PPh3)s, morpholine, THF, rt, 1 h 90
6 3d Rh(PPhg)sCl, agueous EtOH, 80 °C, 3—5 h 70
7 3d LiOH, aqueous MeOH, rt, 2 h 89
8 3e BF3-Et;0, 1,3-propanedithiol, rt 92
9 3e LiOH, aqueous MeOH, rt, 2 h 95
10 3f DDQ, agueous DMSO, 80 °C, 1 h 75
11 3f LiOH, aqueous MeOH, 2.5 h 92

2). Treatment oBa—f with LiOH/aqueous MeOH afforded
acid4 in high yield (entries 1, 3, 4, 7, 9, 11, Table 2).

Alternatively, Parikh-Doering oxidatiofiof the secondary
hydroxyl in 3a, followed by -elimination using DBU,
afforded the desired carboxylic acidin one pot (entry 2,
Table 2). Carboxylic acid could also be liberated from allyl
ester3d either via Rh-catalyzed isomerization of the allyl
group, followed by heating at reflux in aqueous ethé&nol
(entry 6, Table 2) or by a Pd-catalyZedllyl transfer to
morpholine in THF at room temperature (entry 5, Table 2);
both reactions are quite mild and proceed in good to excellent
yield. Benzyl esteBe could also be converted thin 92%
yield via treatment with 1,3-propanedithiol in the presence
of boron trifluoride etherat&!! (entry 8, Table 2). Finally,
oxidative-cleavage employing DO®in DMSO furnished
carboxylic acid4 from PMB ester3f in good yield (entry
10, Table 2).

We next turned our attention to aldehydes containing other
electron-rich heteroatoms. Aldehydé&s{-d) were prepared
and reacted in a similar fashion with 1 equiv Id in the
presence of 20 mol % SmiTable 3). In all cases, the
reaction reliably furnished the desired ester in good yield.
For phenylselenyl aldehydsa the reaction temperature was
reduced to—15 °C to prevent decomposition. Aldehyée,
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(K2COs/MeOH) with those of both known anti-1,3 diol and syn-1,3 diol.

(7) Experimental procedures for the synthesis of all new compounds can
be found in Supporting Information.
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presumably due to sulfur poisoning of the catalyst.
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Table 3. Oxidations in the Presence of S, Se, N, P, and Sn
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THF :
5a - 5e
6a - 6e
aldehyde temp. (°C) time (h) yield (%)
o]
k/\/SePh -15 1 8
5a
¢]
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-10 1 83
5b PPh,
-10to O 15 80
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on the other hand, required longer reaction times and slightly
higher temperature, presumably due to the steric bulk of the
gem-dimethyl substitutioa to the aldehyde group. Finally,
aldehyde (+)-5¢Table 3), a model system used in ot){
tedanolidé®*and (+)-13-deoxytedenolidfesynthetic ven-
ture3 was also successfully oxidized in 70% yield.

In summary, the EvansTishchenko reaction provides an
efficient and practical solution for the oxidation of aldehydes
possessing sensitive electron-rich heteroatoms to esters.
Importantly, careful selection of the sacrificigthydroxy
ketone provides considerable flexibility to liberate the desired
carboxylic acid.
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